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Abstract

I identify the impact of fentanyl exposure misinformation- namely, the erroneous belief that momentary,

passive contact with the potent opioid fentanyl can be seriously harmful- on first responder behavior

during overdose events, and on overall opioid-related mortality. I examine changes in opioid-related mor-

tality following one particularly well-covered episode involving an Ohio police officer in 2017, wherein the

officer appeared to experience an acute opioid overdose after touching what was believed to be fentanyl.

Employing a synthetic differences-in-differences identification strategy, I find areas with greater media

exposure to this misinformation exhibit marked increases in opioid overdose deaths; as well as prelimi-

nary evidence to suggest that overdose interventions performed by first responders were less effective and

argue that this represents an increased hesitancy to render aid due to the potential presence of fentanyl.

These results point to the existence of a heretofore unrecognized driving factor behind the current opioid

epidemic, as well as to the need for policy intervention to counteract further dissemination of such adverse

misinformation.
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By causing fear and panic among such key partners in responding to the overdose

crisis, we’re putting people’s lives at further risk and adding to the stigma around

drug use.

— Keith Brown, Katal Center for Health, Equity and Justice director,

quoted in the Times-Union in 2018.

1 Introduction

In 2021, life expectancy at birth in the United States declined by 1.16%, from 77.0 to 76.1 years (Arias et al.,

2022). These stark changes are overwhelmingly the result of excess COVID-19 deaths, but deviations from

long-term trends can be traced back, at least in part, to shifts that first presented in the years preceding the

pandemic. In the years 2015 and 2017, on the heels of a worsening opioid epidemic, life expectancy reversed

a 25-year trend of year-over-year gains to decline by 0.2 and 0.1 years (Devitt, 2018), respectively; and for as

much attention as the COVID-19 pandemic has duly received, it is worth noting the sobering statistic that

it was in 2021 wherein annual drug-involved overdose deaths exceeded 100,000 persons for the first time.

For perspective, of the 0.9 year decline in life expectancies in that year, approximately 16% (compared to

COVID-19’s 50%) can be directly attributed to changes in unintentional injury deaths, of which accidental

drug poisonings largely constitute. Within just the 18-45 age group these effects are even more pronounced,

where accidental overdoses involving synthetic narcotics (an estimated 90% of which are associated with the

opioid fentanyl or its analogs) were the leading single cause of death, exceeding even suicide, car accidents,

heart disease and cancer (Jones, 2023).

It is unsurprising in light of these statistics that many advocacy groups and policymakers have taken

to treating fentanyl as a singularly unique threat to public health. From a pharmacological perspective

this appears warranted: Fentanyl can be 100 times more potent than morphine, and 50 times more potent

than heroin (Ramos-Matos et al., 2022). Considering the relative ease of access and low cost of the drug in

illicit markets, fentanyl is also commonly used as an adulterant which has further exacerbated its lethality

through the consumption by unwitting- and often opioid naive- users. Only trace, bordering on imperceptible

quantities (2 mg) of the raw substance are needed to trigger fatal respiratory failure when used intravenously,

which has prompted some advocacy groups to claim that “if you can see it, it can kill you.”1 However, like

other synthetically produced opioids tramadol and carfentanil, fentanyl poses no significant acute health

risk to individuals when exposed to the substance incidentally. Dermal contact and inhalation both require

1Quote pulled from Jackson County, Missouri’s Community Backed Anti-Crime Tax (COMBAT) program website:
https://www.jacksoncountycombat.com/818/Get-The-Fentanyl-Facts.
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extremely prolonged exposure intervals to receive even clinical dosages (Moss et al., 2018), which all but

eliminates the possibility of overdose from momentary contact. Nonetheless, sensational news stories detailing

the supposedly-instantaneous lethality of the opioid, perhaps due in part to the embellished exposure risks

promulgated by the DEA and other law enforcement agencies, have flourished (Beletsky et al., 2020). So

persistent a media phenomenon has this become in fact, that public perceptions of fentanyl exposure hazards

no longer align with the reality described by the clinical toxicology literature; and mere speculation on the

presence of the narcotic within communities has elicited such outsized alarm as to be described as a form of

moral panic (Ciccarone MD, 2020).

The question this study addresses is how these erroneous beliefs on fentanyl exposure hazards, in their

near-ubiquity, have factored into the broader opioid epidemic and related overdose mortality. Previous

research has succeeded in establishing the direct effect that fentanyl’s introduction to illicit drug markets

has had on mortality within the context of use behavior, but has largely neglected the potential influence

of bystander and first responder perceptions. This is relevant because opioid overdoses are unique among

accidental drug poisonings for their relative treatability with prompt medical intervention. The opioid

antagonist naloxone (also known by the brand name Narcan), can safely resuscitate unresponsive victims,

requires no specialty medical training to ensure its correct administration, and is widely available without

prescription at low or zero costs. Critical however, is that these naloxone interventions require close proximity

between overdose victims and those rendering aid. If a first responder or bystander had the means to save

an overdose victim, but also incorrectly believed that they would be at personal risk of injury in doing so,

any ensuing hesitancy could easily translate to death.

Drawing on restricted-use mortality data from the National Vital Statistics System (NVSS) for the years

2014-2019, this study examines the influence of misinformation shocks on opioid-related mortality through

the most common dissemination medium: Media reports of claimed “near-death” experiences suffered by

first responders involving fentanyl. In particular, I focus on a 2017 incident involving an undercover narcotics

officer in East Liverpool, Ohio, who was hospitalized following brief exposure to what was believed to be

fentanyl powder. Prior media analyses (Beletsky et al., 2020) have suggested that this was the seminal

event in pressing the fentanyl exposure myth into the public imagination. As such, I exploit the unexpected

proliferation and random spatial variation in media coverage of this event to estimate the association between

misinformation dissemination and county-quarter opioid-related mortality rates. I find that within the media

market local to East Liverpool, opioid related mortality increased significantly following the 2017 event when

compared against bordering counties, and that these variations in mortality cannot be attributed to other
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contemporaneous factors. Similar, though slightly attenuated effects are observed within other media markets

across the country that featured reporting on the East Liverpool event. Moreover, I find evidence that regions

with greater media coverage of this event demonstrate marked shifts in recorded death locations- away from

hospitals, and towards other third locations- among opioid overdose victims, and argue that this is the result

of a reluctance to render aid based on fentanyl hazards perceptions.

The principal contribution of this paper is in providing the first credibly-causal estimates for the economic

consequences of the fentanyl hazards myth, as well as more generally advancing the literature on the role of

misinformation in public health policy efficacy. Focusing on mortality specifically here is essential because

it directly reveals the life-threatening impact of the epidemic and guides effective interventions to save lives.

Although there is a rich body of qualitative work examining the potential influence of this misinformation

on first responder behavior (Attaway et al., 2021; Beletsky et al., 2020; Del Pozo et al., 2021; Herman et

al., 2020), with the exception of this study’s companion article (Kochersperger, 2023), no research to date

has examined the direct outcomes of such beliefs on public health outcomes. Understanding the broader

influence of misinformation- especially that spread through social media- on public health outcomes has

been of particular attention of late on the heels of a growing anti-vaccination movement (Chou et al., 2018;

Wang et al., 2019). Within just the economics literature, for instance, Carrieri et al. (2019) employ a research

design similar to that used here involving one, significant media-driven misinformation shock to derive causal

estimates for its effect on vaccination rates. This study therefore bridges these two literatures and bolsters

the descriptive results already generated on fentanyl hazards myth phenomenon with the application of

causal inference methods.

The remainder of the paper is organized as follows. In the next section I offer some context on fentanyl

hazards misinformation phenomena, including a summary of common first responder overdose protocols and

origins of the myth to get at possible mechanisms. In Section 3 I describe my data and empirical strategy,

and report my results in Section 4. I conclude with a discussion of these results and policy ramifications in

Section 6.

2 Background

2.1 Fentanyl, naloxone, and first responder overdose protocols

Fentanyl is a synthetic piperidine-based opioid drug, meaning that unlike natural or semi-synthetic opioids

such as morphine, heroin, or oxycodone, it is not derived from poppies. It was first developed by Paul
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Janssen in 1959 as an effort to create what was then the most potent analgesic, believing that to do so would

improve safety (Stanley, 1992). The drug first received US medical approval in 1968 and- in line with its

considerable potency- has maintained a somewhat niche prescribing status when compared to other opioids.

Primarily used for managing major pain, most fentanyl is prescribed to patients following surgery or during

late-stage cancer. Among these patients it is particularly common to prescribe transdermal patches, which

are adhesive strips that cling to a person’s skin and are specially formulated to allow fentanyl to enter the

bloodstream over prolonged periods.

Beyond these intended therapeutic uses, fentanyl has developed a complicated and deadly legacy. The

fentanyl analogs carfentanil and remifentanil were implicated in the direct deaths of 125 hostages during the

2002 Nord-Ost siege, when Russian special forces piped aerosolized forms of the opioids into the Dubrovka

Theater in an attempt to subdue Chechen resistance fighters (Riches et al., 2012). Domestically, dozens

of poisoning deaths among children have been credited to transdermal patches for either their mistakened

application (when believed to be a band-aid), or accidental ingestion through chewing (Stoecker et al., 2016).

The most significant aspect to this legacy by far however, has been fentanyl’s role in the illicit opioid epidemic.

Between 2013 and 2020, the number of opioid-related deaths attributed to synthetic opioids increased by a

factor of 18, advancing to the point of accounting for 82% of all opioid-related deaths in 2020 (Hedegaard

et al., 2021). While short-comings in cause-of-death reporting keep the precise number of deaths resulting

from specifically fentanyl use difficult to determine, drug seizure data from the National Forensic Laboratory

Information System (NFLIS) suggest that 59% of all analgesics, and as much as 91% of non-Buprenorphine

synthetic opioids seized by law enforcement contain fentanyl, an analog, or a chemical precursor used for its

production (DEA, 2021). The reasons for this extraordinary change is multi-fold, but from the supply-side

it’s been largely driven by economic factors: Fentanyl is cheap to produce and its high potency allows for

both easier cross-border movement, and cutting with other substances (Greenwood & Fashola, 2021).

Accompanying fentanyl’s growing prevalence within illicit drug markets has been an increased interest

among toxicologists in understanding the precise hazards the opioid poses through passive exposure. In

their review of the extant clinical literature, Moss et al. (2018) find little evidence to corroborate the idea

that momentary contact poses any significant health risk: The required duration of continued exposure to

powderized fentanyl to achieve a therapeutic- let alone, toxic- dosage through inhalation is on the order

of hours, not seconds. Moreover, dermal contact alone does not appear to be capable of permitting the

absorption of fentanyl to the bloodstream.2 In one recent noteworthy event, a first responder was exposed

2Moss et al. (2018) provide the following scenario to illustrate just how unlikely immediate reaction is:

If bilateral palmar surfaces were covered with fentanyl patches, it would take ∼14 min to receive 100mcg of fentanyl
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to a large quantity of analytically-verified liquid fentanyl when it was splashed over their skin, but exhibited

no clinical effects of opioid absorption (Feldman & Weston, 2022).

Numerous harm reduction policies have been advanced in an effort to combat the worsening opioid

epidemic, but few have received as much attention as increasing the availability of naloxone. As an opioid

antagonist, naloxone is capable of reversing respiratory depression from acute opioid intoxication within

minutes of administration. Because of its life-saving capacity, it has been recognized as an ‘essential medicine’

by the World Health Organization. Since auto-injector and intranasal naloxone devices received medical

approval for emergency use in 2014 and 2015, respectively, their use has expanded significantly and are

now widely issued to emergency medical services, law enforcement, fire departments, and community health

clinics.

Despite naloxone’s demonstrated life-saving capabilities, questions remain on its broader efficacy in reduc-

ing opioid mortality. Empirical efforts at understanding the influence of increased accessibility of naloxone

as a policy response to the opioid epidemic have mostly focused on changes to Naloxone Accessibility Laws

(NAL). Rees et al. (2019) look at changes to both NALs and Good Samaritan Laws (GSL) and find that

NAL adoption yields significantly negative effects on opioid mortality, but that these estimates are almost

entirely driven by early-adopters, suggesting these treatments were probably endogenous responses. Con-

versely, Doleac and Mukherjee (2022) employ a similar research design and find evidence that naloxone access

had no significant effect on opioid mortality. Erfanian et al. (2019) attempt to account for spillover effects

across borders in regards to both opioid mortality and NALs by estimating a spatial Durbin model. They

find NALs have very mixed results, but generally do not appear to significantly decrease mortality directly

(though certain NALs yield positive and negative effects when examined in the aggregate with spillovers to

neighbors). This lack of consistent or clear estimates for these potential effects highlights a common theme:

Meta-analysis (Smart et al., 2021) of multiple literatures find that NALs have mixed, if only slightly-positive

impacts on opioid mortality. The ambiguity here is often attributed, like other similar harm reduction

policies (Packham, 2019), to offsetting moral hazard behavior (Doleac & Mukherjee, 2022), but my results

here hint to the possibility of another attenuating factor. Simply making naloxone more available may be

insufficient as a lifesaving measure if people are reluctant to use it.

To illustrate the role that naloxone plays in overdose situations, I will describe a typical scenario and the

. . . This extreme example illustrates that even a high dose of fentanyl prepared for transdermal administration
cannot rapidly deliver a high dose.

That is, even when the entire surfaces of both palms are covered with patches, it still takes more than 10 minutes to receive
a therapeutic dose. They note that these figures are unrealistic however, as they are “based on fentanyl patch data, which
overestimates the potential exposure from drug in tablet or powder form in several ways.”
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standard protocols employed by those rendering aid. Firstly, note that the first responders to an overdose

scene are often not emergency medical services (EMS), but law enforcement officers (LEO). Officer surveys

and analysis of bodycam footage suggest that in the majority of cases LEO are first to the scene (Smiley-

McDonald et al., 2022; White et al., 2022), sometimes beating EMS by several minutes. While there is some

slight heterogeneity with this tendency in regards to urbanicity (Smiley-McDonald et al., 2022) (officers

in rural regions report arriving around the same time as EMS), even in areas where not commonly first

to the scene, LEOs are still more likely to administer naloxone than other responders when they are first

(Macmadu et al., 2022). Because opioid-induced respiratory failure can cause death by brain hypoxia within

a matter of minutes and responders are already operating off a time delay when arriving to a scene, LEOs

often immediately administer naloxone then attempt CPR, so as to “buy time” before EMS arrives (Smiley-

McDonald et al., 2022). Depending on victim response, first responders may administer multiple doses of

naloxone; and if stabilized, they are typically either arrested, escorted to a hospital, or released at the scene.

Because of the likelihood of being in close proximity to narcotics, it has been recommended that first

responders to suspected fentanyl overdoses dawn nitrile gloves and- when believed to be airborne- facemasks

(Moss et al., 2018). While these recommendations do not differ materially from those made for any other

drug overdose,3 it has not stopped private industry from marketing specialty fentanyl personal protective

equipment (PPE). These fentanyl-proof gloves, testing equipment, and hazmat suits have been adopted

by some police departments (Herman et al., 2020), but have also been panned by toxicology experts as

unnecessary (Lynch et al., 2018). Considering that the margin of time needed for an overdose to become

lethal could be on the order of seconds, delaying needed aid to a victim to put on superfluous PPE has

prompted calls to reconsider these practices and to relax even the standard recommendation for use of N95

respirators (Lynch et al., 2018; Winograd, Phillips, et al., 2020; Herman et al., 2020; Attaway et al., 2021).

2.2 The fentanyl panic and its origins

The principle vector through which fentanyl misinformation appears to be disseminated is media reporting

on supposed exposure events, most typically those involving law enforcement officers. So prevalent have these

media pieces become in communities hardest hit by the opioid epidemic that reported-on scenarios often

follow a standard formula: Following an attempted drug possession arrest, an officer comes into contact

with a powderized narcotic; through either the admission of the offender or just supposition, said officer

comes to believe that this substance is fentanyl; after a period of several minutes the officer reports feelings

3The NIOSH recommendations are intended for when any illicit drugs are at an emergency medical scene and offer no
additional considerations for fentanyl specifically. See: https://www.cdc.gov/niosh/topics/fentanyl/risk.html
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of dizziness, shortness of breath, and may even faint; in an attempt to resuscitate the exposure victim,

other officers or first responders may administer naloxone or escort them to a hospital to receive treatment.

Affected first responders, their peers, and accompanying media portrayals may attest these reactions to

acute opioid toxicity, but even if one were to disregard the extreme unlikelihood of passive fentanyl exposure

eliciting such medical responses, there is virtually no evidence to corroborate the veracity of these claims

(Lynch et al., 2018; Herman et al., 2020; White et al., 2022). Herman et al. (2020) combed through more

than one-thousand media reports involving supposed first responder fentanyl exposure events between 2014-

2018 and could not find a single instance where either the affected parties reported a plausible poisoning

scenario or laboratory testing confirmed poisoning. Instead, they find that the most commonly reported

symptoms are consistent with stress-induced panic, and that these reactions are probably psychosomatic in

origin.

Although their underlying accuracy is disputed, the media presence first responder fentanyl exposure

events maintain is far from trivial. Estimates on the upper-bounds of cumulative facebook user-views that

these media reports have received between 2015 and 2019 is approximately 70 million, while only 6.6% of

these shares correspond to articles that correctly refute the incidental exposure hazards (Beletsky et al.,

2020). Accordingly, surveys suggest that knowledge of these erroneous exposure hazards have permeated

aggressively through the first responder community, with as many as 80% of queried law enforcement and

emergency medical services members agreeing that momentary contact with fentanyl can be deadly (Persaud

& Jennings, 2020; Del Pozo et al., 2021; Attaway et al., 2021; Berardi et al., 2021; Bucerius et al., 2022).

Of those law enforcement officers who echoed these sentiments, many note that they had learned of the

phenomenon second-hand and not through formal police channels, suggesting that media coverage may be a

contributing factor for first responder perceptions specifically (Attaway et al., 2021). Moreover, these beliefs

also appear to translate directly to first responder behavior, with some law enforcement admitting to an

unwillingness to render first aid to those they suspect of suffering from fentanyl poisoning (Berardi et al.,

2021; Bucerius et al., 2022).

The valid hazardous concerns of fentanyl as an accidental poisoning agent can be traced to historical

events with relative ease, yet the origins of the fentanyl exposure hazards myth is somewhat more opaque:

Urban legends of malefactors clandestinely dosing unsuspecting highway patrolmen date back to at least the

1970’s4; and parallels have been noted to earlier, similarly specious medical panics regarding first responder

exposure misinformation during the HIV/AIDS epidemic5 and early waves of clandestine methamphetamine

4See “LSD Given to Police Officer” at Snopes here: https://www.snopes.com/fact-check/jar-jar-drinks/
5One ambulance service director in New York State, who had worked as an EMT during the HIV/AIDs crisis made this
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lab raids the 1980’s and 90’s6 (Bucerius et al., 2022). What is known for certain is that beginning in 2016,

medical toxicologists began receiving inquiries concerning the veracity claims made in the media that fentanyl

could harm first responders on touch (Herman et al., 2020). In that same year, the US Drug Enforcement

Administration, published a press release describing one exposure event involving law enforcement in New

Jersey, the details of which were shared further by the National Police Foundation (Del Pozo et al., 2021).

Beyond the influence of these agency press releases, social and news media analysis performed by Beletsky

et al. (2020) pinpoint one heavily-reported event as being the primary culprit in cementing these ideas within

the public consciousness. While attempting to make an arrest in May 2017, an East Liverpool, OH police

officer was exposed to what was believed to be fentanyl. Within minutes he became lightheaded and naloxone

was administered several times, but his symptoms were severe enough to eventually require hospitalization.

Media coverage of the event was swift, with early news reports receiving tens of thousands of facebook

shares (Beletsky et al., 2020). As illustrated in Figure 1, average search prevalence among Google queries

for terms related to fentanyl exposure increased by a factor of five immediately following this particular

event. Similarly, in Figure 2 I compare search prevalence for all queries involving the term “fentanyl” across

time within the Youngstown, OH Designated Market Area (DMA) (where East Liverpool is located) against

neighboring DMAs, as well as all other DMAs in the surrounding states of Pennsylvania, Ohio, and West

Virginia. One can observe that in the media market local to East Liverpool, general interest in fentanyl

peaks immediately following the 2017 event, before returning to similar search frequencies of the neighboring

areas. This is consistent with Beletsky et al. (2020)’s observation that media coverage of this event- despite

its relative popularity- varied substantially across space. Even as more events such as these would unfold

involving LEOs from all over the country, the East Liverpool event remains unique in terms of both its

timing, and ultimate breadth of coverage.

In 2018, the American College of Medical Toxicology (ACMT) and American Academy of Clinical Toxi-

cology (AACT) released a joint statement to counter the sensationalist claims which had been made in the

preceding two years (Moss et al., 2018), but this effort appears to have largely fallen on deaf ears. Since

then, hundreds more articles have been published detailing claimed exposure events (Beletsky et al., 2020),

comparison more overt, saying (Bump, 2018):

It was a lot of hype ... We didn’t understand it, we didn’t know how it was transmitted, and I think we’re seeing
the same thing here. But the reality is, the initial scares about exposure to this drug just have not panned out.

6In a similar fashion to specialized fentanyl PPE, beliefs about long term complications related to meth lab exposure among
retired law enforcement officers prompted the Utah state government to finance a controversial therapy regimen in 2007. The
sauna-based therapy (which was developed by L. Ron Hubbard and delivered through a Church of Scientology-associated
organization (Scientology Critical Information Directory, 2009)) claimed to “sweat out” toxins, though this was criticized for
having little to no scientific basis (Bonisteel, 2015).
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with the phenomenon being reported as recently as Summer 2023.7

3 Empirical Approach

3.1 Data

To observe the effects of fentanyl misinformation on opioid mortality, I utilize Nielsen’s Designated Media

Markets (DMA) to identify treated counties within the same media market as East Liverpool, OH. As

argued above, this May, 2017 event appears to be the pivotal event in establishing public misconceptions

on the hazards of passive fentanyl exposure, so distinguishing between regions based on their exposure to

misinformation through the media would permit one to identify treatment effects. DMAs are very similar

to the Federal Communications Commission’s (FCC) Television Market Areas (TMA), the legally-defined

borders that determine broadcast rights and channel availability for all over-air, satellite, and cable television.

TMAs borders are usually larger than actual media coverage areas (particularly in mountainous regions like

Appalachia) however, so Nielsen DMAs are adjusted to only include counties with significant metered-

viewership. I hand-code these DMAs based on a publicly available map8. Because there still remains the

potential for some bordering counties to be treated by broadcast misinformation, I additionally employ FCC

significant viewership data to include any counties that could be plausibly subject to spillovers9.

To describe mortality effects, I utilize the CDC’s restricted-use multiple cause of death file. These data

include the entire universe of deaths within the United States over the period 2014-2019 and are recorded at

the individual-level. Following the procedures outlined by Svetla et al. (2015), I identify all overdose deaths

as those with ICD-10 underlying cause of death codes X40-X44, X60-X64, X85, Y10-Y14; then identify opioid

overdose deaths from these as those with with mortality-associated conditions codes T40.0, T40.1, T40.2,

T40.3, T40.4, or T40.610 I aggregate these opioid overdoses and compute the per 100,000 population death

rate by the county-quarter and initially drop any counties which did not record a single opioid overdose over

the six year sample. To account for potential undercounting of opioid overdoses, I also use aggregated counts

of overdose deaths which include the mortality-associated conditions code T50.9 for poisoning by unspecified

drugs, medicaments and biological substances (Buchanich et al., 2018). As an additional robustness check,

7See news article, Florida sheriff: Deputy exposed to fentanyl, saved by Narcan, here:
https://www.newsnationnow.com/crime/fentanyl/florida-sheriff-deputy-exposed-to-fentanyl-saved-by-narcan/

8Available here: https://web.archive.org/web/20230315182138/https://thevab.com/storage/app/media/Toolkit/DMA Map 2019.pdf
9The FCC is legally obligated to conduct periodic viewership surveys to determine which specific channels re-

ceive significant viewership outside of their designated TMAs. I use the 2017 survey, which is available from here:
https://transition.fcc.gov/mb/significantviewedstations061817.pdf

10These T-codes correspond, respectively, to: opium, heroin, natural and semisynthetic opioids, methadone, synthetic opioids,
and other or unspecified opioids.
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I perform placebo tests employing similar mortality rates for motor vehicle accidents, heart attacks, and

assault excluding the use of drugs or medicants11

Additional control covariates include county-quarter demographic and economic measures, as well as

opioid-use proxies such as the annual opioid dispensing rate and heroin arrest rates, and policy indicators

for naloxone access, good samaritan, and opioid prescription control laws. One likely confounder which may

prevent the interpretation of any naive regression results as causal is the significant county-level variation

in fentanyl and heroin prevalence over the observed time frame. Broader historical analyses of the opioid

epidemic have emphasized two consumption innovations– the transition from prescription painkillers to

heroin, and eventually from heroin to fentanyl– as epochal in defining the associated mortality. There is

particular concern over the market transition towards primarily-synthetic opioid consumption: Because the

introduction of fentanyl was so swift, disparate, and ultimately lethal, the potential for spuriously conflating

those associated outcomes with media misinformation treatment effects seems a valid concern. To control

for these confounding effects then, I also utilize law enforcement drug seizure data collected from Harm

Reduction Ohio, which includes the entire universe of Ohio’s Bureau of Criminal Investigation’s (BCI) crime

lab results for the years 2014-2019. A complete breakdown of controls employed, their sources, and spatio-

temporal coverage is available in Table 1.

Unlike user surveys, which are largely dependent on the word of dealers in establishing the provenance

and composition of traded goods, the precise chemical makeup of seized samples are determined through a

gas chromatography process, and as such much less likely to omit or mistake the presence of specific opioids.

The BCI laboratory is also by far the largest crime lab within the state– of Ohio’s 88 counties, only two

are absent for the years observed. These data contain individual offense-level observations (including seizure

data, arresting authority, and county of seizure location) and the corresponding chemical makeup of any

drugs seized, which represents a significant improvement over opioid possession or intent-to-distribute arrest

records. I extract from this dataset the total county-quarter counts of seizures which tested positive for

fentanyl, or the closely related carfentanil, and do the same for heroin12.

Summary statistics for key variables of interest and covariates are listed in Table 2. To align with

my primary identification approach, I separate between columns 1 and 2 the statistics corresponding to the

treated counties (those within the Youngstown DMA), and control counties (those within a DMA that shares

11For motor vehicle accident deaths, I use all underlying cause of death codes corresponding to unintentional motor vehicle
deaths: [V02-V04](.1,.9), V09.2, [V12-V14](.3-.9), V19(.4-.6), [V20-V28](.3-.9), [V29-V79](.4-.9), V80(.3-.5), V81.1, V82.1, [V83-
V86](.0-.3), V87(.0-.8), V89.2. For assault-related deaths, I use all codes contained under X86-99 and Y00-Y05, which includes
all forms of assault, excluding assault by drugs, medicaments and biological substances. For heart attack-related deaths I use all
codes contained under I10-15, hypertensive diseases; I20-25, ischemic heart diseases; I46, cardiac arrest; and I50, heart failure.

12Because fentanyl is almost universally used as an adulterant of heroin or psychostimulants, it is worth noting that these
fentanyl and heroin counts are not exclusive.
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a border with the Youngstown DMA). One can observe that average mortality within the treated counties is

greater than their neighbors. To expand on this, in Figure 3 panel a I plot a time series of average county-

month opioid overdoses for both the treated counties and their direct neighbors (that is, only the counties

that share a border with the treated), and all other counties in Ohio, Pennsylvania, and West Virginia.

Because of the relative ruralness of these treated counties, direct neighbors are probably more appropriate

baselines for comparison here. The parallel trends in mortality prior to treatment, and divergence afterwards

appear to lend credence to the media exposure hypothesis, although the general stabilization or decline in

mortality is somewhat unexpected. In panel b I plot the time series for the county-month average percentages

of drug seizures containing heroin and fentanyl for the entire state of Ohio. These plots demonstrate the

importance of including opioid type prevalence measures, as fentanyl overtook heroin in ubiquity at almost

precisely the same time as the East Liverpool event. Omission of such controls could spuriously inflate

derived estimates if fentanyl was more lethal, and differentially distributed among treated and control areas.

3.2 Identification Strategy

My primary identification approach is to look at opioid mortality within the Youngstown Ohio DMA and

compare this against the opioid mortality in some combination of bordering counties before and after the

2017 East Liverpool event. Because East Liverpool lies squarely within the Youngstown media market, and

because both the timing and location of the event are seemingly random, the identifying assumption is that

any difference in overdose mortality trends between counties within and outside this market can be attributed

to behavioral changes among first responders due to the difference in exposure to the corresponding media

coverage. In examining this particular exogenous media shock, I exploit random changes in public perceptions

of the fentanyl exposure hazards to identify the causal effects on first responder behavior. The counterfactual

here would be that, absent some media intervention, individuals would not erroneously believe fentanyl to

be so hazardous as to stymie or delay emergency response to overdoses. This is essentially the canonical

differences-in-differences (DiD) research design, but I use additional data-driven methods to create a better

match on pre-treatment observables,

To describe this procedure in more detail, consider a conventional approach at deriving these misinfor-

mation treatment effects using the following two-way fixed effects (TWFE) model:

yct = µ+ αc + βt + τ ·MIct (1)

where yct is the opioid-related mortality rate in county c in quarter t; αc and βt are county and quarter
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fixed effects, respectively; and MIct is an indicator equal to one representing misinformation exposure for

all counties within the Youngstown DMA following the May 2017 treatment, and zero otherwise. Because

this model specification holds the composition of intervention and comparison groups stable, and assuming

that treatment assignment is not itself endogenous with opioid-mortality, then τ here can be interpreted

as a causal average treatment effect on the treated as long as the parallel trends assumption is satisfied.

A common critique with this standard DiD approach however, is that the validity of the parallel trends

assumption cannot be formally tested, meaning that ad hoc control definitions could be yielding spurious

results. Considering the relatively small size of the treated sample examined here, this is particularly

threatening to the causal interpretation as the control group could be misspecified.

With this in mind, I instead estimate a synthetic differences-in-differences (SDiD) model that minimizes

the following error:

argmin
α,β,µ,τ

{
C∑

c=1

T∑
t=1

(yct − µ− αc − βt − τ ·MIct)
2
ω̂sdid
c λ̂sdid

t

}
(2)

where ω̂sdid
c is a vector of statistically-derived county control weights, and λ̂sdid

t is a vector of time weights

computed according to Arkhangelsky et al. (2021). The SDiD control generated by these weights minimizes

the error in pre-treatment trends when compared with the treated, so that it represents a more realistic

counterfactual than any ad hoc specification. Arkhangelsky et al. (2021) describe this as a “generalized”

differences-in-differences model, because- unlike the canonical DiD which assigns uniform weight to each pre-

period control- SDiD weights those control observations which best construct parallel pre-trends. Because of

this strength, SDiD method has been demonstrated to generally outperform both conventional TWFE and

SDiD control estimation approaches (Arkhangelsky et al., 2021). In addition to these approaches, I estimate

a staggered-SDiD that considers all counties within DMAs that had at least one news article published

making reference to the East Liverpool event as treated, and their bordering DMAs as controls. This is a

similar identification approach to the primary method, but permits DMAs other than just Youngstown to

be treated and uses variation in timing of media coverage.

A growing concern among applied researchers with interpreting either conventional synthetic control or

SDiD estimates derived from observations of the dependent variable alone as causal is that the asymptotic

irrelevance of auxiliary covariates may not necessarily hold over finite sample spaces. While the recommenda-

tion is often overlooked, Abadie et al. (2010) and others (Kaul et al., 2022) propose the inclusion of potential

confounders whenever researchers find them relevant. Recent simulation results indicate that omitting these

confounders in model specifications could not only introduce significant bias to estimates but also render

the precise direction of this bias virtually unknowable from the outset (Pickett et al., 2022). As such, when
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possible I duplicate all estimation procedures with and without the inclusion of plausible confounders, and

display both sets of results.

To utilize contemporaneous observations of relevant covariates within the synthetic differences-in-differences

estimation, Arkhangelsky et al. (2021) propose first regressing the dependent variable on the covariates, then

running the SDiD procedure on the obtained residuals. Kranz (2022) demonstrate however, that in instances

where covariates have time-varying influence on the dependent variable, this residuals approach often fails at

constructing a SDiD control which satisfies the parallel trends condition. They instead suggest a correction

approach that utilizes fitted values for the dependent variable derived from a two-way fixed effects regression

including the covariates. Because several important control variables within my model- in particular, those

pertaining to opioid demand- likely differ in their influence on opioid-related mortality across time,13 I opt

to utilize this ‘projected’ covariate approach when running my regressions.

Lastly, it is important to acknowledge that- while initially untreated- the control counties are susceptible

to contamination over time as information spillovers occur through social and national media coverage of

later, similar misinformation-triggering events. It is unlikely that my model is capable of entirely controlling

for spillovers. Instead, I opt to place particular emphasis on examining dynamic trends in mortality for the

bulk of my analysis: If delineating between treated and untreated counties becomes more difficult as time

passes, I should still be able to observe any eventual convergence between the treated and controls.

4 Results

4.1 Primary Results

The primary results of my regressions are outlined in Table 3. As detailed already, I estimate SDiD models

which assume all counties within the Youngstown DMA are treated through exposure to misinformation

following the coverage of the East Liverpool event, while donors to the SDiD control are drawn from the

immediately bordering counties to this treated DMA. In the upper panel, I estimate SDiD models both with

and without auxiliary covariates using several measurements for accidental drug poisoning. These estimates

comprise of all drug-related poisonings; opioid-related poisonings; possibly-opioid-related poisonings which

include all opioid-related deaths, as well as those coded as related to unspecified drugs; illicit opioid-related

poisonings (those associated with either heroin or a synthetic opioid, like fentanyl); and synthetic opioid-

13For instance, I employ possession and distribution arrests data as a proxy for illicit opioid demand, but these data do not
distinguish between opioid types. Since the observed timeframe also coincides with the transition from predominantly heroin
to fentanyl use, parametrizing this demand effect as constant while there are unobserved changes in illicit opioid lethality could
bias pre-trends.
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related poisonings. In the lower two panels I re-estimate my opioid-related SDiD model, but stratify by

decedent demographics and age groups.

Summarizing these results, I observe large and statistically-significant increases to overdose mortality

rates within the Youngstown DMA following the East Liverpool event. Across specifications both with and

without the inclusion of control variables, I observe overall accidental drug poisoning and opioid-related

poisonings are increasing by between 2-4 additional deaths per 100-thousand population. My preferred

outcome measure for this analysis, opioid-related mortality, increased by approximately 2.84 deaths per 100-

thousand population. This jump in mortality represents a 56.6% increase to the average quarterly mortality

for the treated counties relative to pre-treatment period. The results for possibly-opioid related, illicit opioid-

related, and synthetic opioid-related overdose deaths highlight data quality concerns that have been voiced

by other researchers. It appears likely that- consistent with earlier findings (Buchanich et al., 2018)- many

illicit opioid-related overdose deaths are being coded under this general “unspecified drugs” category. A

lack of adequate toxicology screening, particularly early on when fentanyl first entered illicit drug markets,

may have failed to correctly identify synthetic opioids when they were in fact present. While I cannot

be certain that all of these deaths represent fentanyl, or even opioid-related deaths, concern for categorical

undercounting here seems valid. Because of this, caution is warranted in interpreting these more drug-specific

mortality coefficient estimates, as they are almost certainly biased downward. More reassuringly however,

the stratified SDiD results illustrate sensible heterogeneity in changes to opioid-related mortality. Consistent

with other research on the opioid epidemic, the bulk of these effects are being driven by white males between

the ages of 25-34.

To better illustrate the dynamic trends of this phenomenon, I plot time series of the observed treated

opioid-related mortality against the computed counterfactuals for the estimated opioid-related mortality

SDiD model in Figure 5. Interestingly, opioid mortality appears to decline immediately following treatment

for all counties, but critically, the treated counties rebound much more quickly. This could be representing

an incubation peroid for the misinformation to disseminate and take hold.

One potential confounder missing from these model specifications is the variation in the ubiquity of

particularly potent illicit opioids, fentanyl and heroin, over the observed period. Prior research examining

Ohio over this same timeframe (Peterson et al., 2016; Zibbell et al., 2022) has identified the regional preva-

lence of fentanyl as a significant driver of opioid mortality, so the inclusion of some measure of this within

the estimated model appears justified. By employing drug seizure data from Ohio’s Bureau of Criminal

Investigation’s crime lab (BCI), I use county-quarter counts of total seizures that tested positive for these
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compounds to proxy for their prevalence within local drug markets. A problematic factor with using these

direct seizure counts is that they could conceivably be endogenous with opioid deaths.14 As an alternative

then- and since I am only interested in the relative prevalence of these opioids- I divide these drug-specific

counts by the total count of all drug seizures conducted within that county-quarter. To test whether these

proportional estimates are endogenous, I estimate a series of simple two-way fixed-effects models where I

regress total drug seizures, fentanyl as percent of seizures, and heroin as percent of seizures on the one-year

lag of opioid deaths. The results for these models are listed in the upper panel of Table 4, but to summarize:

As anticipated, deaths do appear to be significantly increasing the number of seizures performed in the

subsequent years, while the relative proportions of these seizures being either fentanyl or heroin do not seem

to affected.

With these prior results in mind, I attempt to control for opioid prevalence variation by including the

proportional measures of fentanyl and heroin ubiquity as additional covariates and re-estimate my primary

SDiD model specification on the subsample of Ohio counties. While not a direct threat to the validity of

my reduced form estimates, a concern with interpreting these results could be a misidentification of the

underlying mechanisms. For instance, it may be the case that these misinformation shocks are increasing

opioid-related mortality, but are doing so by increasing consumer demand for fentanyl by users. To test this,

I replicate my Ohio SDiD results twice more, but with fentanyl and heroin prevalence on the left-hand side.

The results for the three Ohio models are listed in the lower panel of Table 4. In column 1, I note

that even with the inclusion of fentanyl and heroin drug seizure proportions, the primary specification SDiD

results within Ohio do not significantly change. In columns 2 and 3, I see that when treating fentanyl

and heroin prevalence as the dependent variable, there is no significant change following the East Liverpool

misinformation shock. This highlights that changes to opioid overdose death are likely not arising from an

increase in demand following media reports on fentanyl’s potency. Taken together, these results strengthen

the central argument that these observed changes to opioid-related mortality are being driven by some

external factor other than fentanyl, or even heroin prevalence.

4.2 Robustness Checks

An initial concern with my estimates is that cluster bootstrap-derived standard errors are less dependable for

small treated sample sizes. Because I have only four treated counties, I re-estimate my primary SDiD spec-

14This could arise, for instance, when a year of unexpectedly high opioid-related deaths within a county prompts local
policymakers to invest more heavily in drug enforcement, and consequently sees an increase in seizures performed in the
subsequent years.
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ifications, but instead employ the placebo protocol outlined by Arkhangelsky et al. (2021). This approach

is similar to permutation tests performed in randomization inference used for conventional DiD estimators

(Conley & Taber, 2011): To directly estimate the noise level of the control units, a number of controls are

randomly assigned as treated and the SDiD model is re-estimated on the donor set alone. Assuming ho-

moscedasticity across units, this variance estimator would provide more accurate- if also more conservative-

confidence bounds for the causal treatment effect. I perform this placebo procedure using 500 random

placebos and plot the empirical distribution for their derived SDiD coefficients in Figure 6. Across specifica-

tions both with and without the inclusion of covariates, I find my initial SDiD estimates for opioid-related

mortality retain their 99% significance level .

I re-estimate my opioid-related mortality model with considerations for a spate of other potential threats

to validity and list the results in Table 5. These variations include an alternative treatment specification

meant to control for information spillovers that includes any counties the FCC has listed as having significant

viewership of any stations within the Youngstown DMA; alternative dependent variables of opioid-related

death counts in levels and logs derived from the inverse hyperbolic sine transformation, rather than mortality

rates; and a conventional DiD model. In the top panel I estimate these across all observations for the period

2014-2019, while in the bottom panel I re-estimate the opioid-related mortality model on the subset of

observations occurring after the October 2015 adoption of the ICD-10 coding system to account for any

potential data inconsistencies. For each of these, I experiment with several different donor-set specifications

to derive my SDiD controls. Under my preferred specification in column 1, donors to the SDiD control are

drawn from the immediately bordering counties to the treated DMA; under the specification in column 2,

I expand this donor set to include all counties of bordering DMAs; and in column 3 I include all counties

in bordering DMAs but exclude immediately bordering counties so as to control for spillovers. In Table 6 I

replicate these results, but use local commuter zone delineations from Fowler and Jensen (2020) instead of

DMAs. Under the primary donor set specification, the magnitude of the coefficients listed in column 1 are

consistent with the preferred SDiD estimates, and are broadly significant. DiD estimates are qualitatively

similar to SDiD, but are insignificant, which highlights the potential advantages that this more generalized

estimation approach affords. Coefficients generally maintain their magnitudes across the wider donor set

definitions in columns 2 and 3, but are noisier.

To better understand these results, I plot the three SDiD controls based on the different donor set

specifications from row 1 of Table 5 in Figure 7. One can observe that the generated SDiD controls are

nearly identical across these specifications, but that the alternative donor set definitions including more
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counties from the bordering DMAs are weighting earlier observations from the pre-period more heavily

(represented by the shaded regions in the bottom-left). It is primarily because of these differing time

weights- not the composition of the SDiD control- that the alternative donor set specifications are yielding

smaller, noisier treatment effect estimates. SDiD time weights are assigned by minimizing the error between

pre- and post-treatment observations of the dependent variable on all controls (that is, it affords more weight

to pre-treatment periods which are better predictors of post-treatment control outcomes). If the donor set

contains controls which are wholly inappropriate for construction of the SDiD control, the unit weighting

algorithm would assign them low weights when estimating treatment effects; but because the time weighting

algorithm is applied across all members of the donor set, then these invalid controls are receiving the same

weight as any other. Therefore, when appropriate and invalid controls follow different time trends, the vector

of generated time weights is probably biased away from being the best predictor of relevant post-treatment

outcomes.

Put differently, the inclusion of control counties which are qualitatively different from those within the

treated DMA could be excessively weighting early-period observations if these inappropriate control counties

report flat or declining opioid mortality rates, rather than the wider increasing trend. One way of possi-

bly identifying this biasing effect is to examine covariate balance on the SDiD-weighted controls against

the treated counties. The reasoning behind this is that a donor set with better balance in terms of ob-

servables linked to opioid mortality should result in a SDiD control that more accurately mirrors an ideal

counterfactual. I perform a series of covariate balancing tests for each of these three donor set specifications

and list the results in Table 7. I find that for all of the examined covariates except subprime credit score

percentages, opioid dispensing rates, and the opioid prescription restriction policy indicator, my primary

specification demonstrates a greater balance than the alternative donor sets. This is intuitive when consid-

ering Youngstown’s locale: As the radius of counties included within the donor set is expanded outward, it

begins to encroach on the denser, more urban Cleveland, Akron and Pittsburgh metropolitan areas. Never-

theless, the magnitude of the alternative SDiD estimates do not vary substantially, so taken together with

these other considerations I retain the initial, adjacent counties specification as my preference.

Because my principal identification strategy considers only one relatively small media market as treated,

it is possible that these results could be driven by some unobserved change to the underlying first responder

mechanism other than the misinformation effect that I describe. For instance, it could be that counties

within the Youngstown DMA experience similar changes in law enforcement or EMS staffing and response

policies that incidentally coincide with the East Liverpool event. However unlikely, in such an instance my
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estimates would be sizably biased upwards. To descriptively analyze this possibility, I collect municipal-

and county-level expenditures data on police protection, fire prevention, and health services spending from

the Census’ Annual Survey of State and Local Government Finances15. I plot time series for per-capita

spending in Figure 8 and compare the expenditures made within Youngstown OH DMA against those made

by governments elsewhere in Ohio, Pennsylvania, and West Virginia. I observe no substantial relative trend

changes within the Youngstown OH DMA following the East Liverpool event. Because of the inconsistency

in spatial coverage for these data however (not all local and county governments surveyed in every year), I

would emphasize that these figures are only suggestive.

To address this issue then, I estimate three additional model sets identical to my preferred specification

that instead use motor vehicle accidents, heart attack-related, and assault-related death rates as the de-

pendent variable. The rationale here is that if there is some alternative factor influencing first responder

behavior, one would be able to observe similar changes in other common forms of death where mortality

is subject to these agents’ behavior (that is, other causes of death where lives can be saved with timely

intervention by LEO and EMS). If not however, these regressions would act as falsification tests and return

null results. The results of these falsification tests are outlined in Table 8, and as expected, motor vehicle,

heart attack and deaths show no significant variation within the Youngstown DMA compared to control

areas.

4.3 Mechanisms Analysis

4.3.1 Identifying media’s direct role in misinformation shocks

Though there is evidence to corroborate the claim that the East Liverpool event influenced opioid mortality,

it is still unclear how precisely this occurred. I have assumed up to this point that media coverage is the

primary driver, but social media and word-of-mouth are equally-plausible vectors for misinformation. To

test this, I employ a slightly different treatment definition which utilizes fentanyl misinformation media

coverage data collected by Beletsky et al. (2020) to identify the associated effects of mass media reporting on

mortality. These data collected from the Mediacloud system cover archived news articles for the period 2015-

2019 which contain various combinations of phrases indicating the presence of erroneous fentanyl exposure

hazards information. 16

15Depending on the specifics of local and county government program structure, outlays for first responder services could
appear in any one of these categories. Generally, since ambulance services are largely operated as private entities in rural areas,
most government expenditures for emergency medical training and equipment will appear as either police protection or fire
prevention expenses

16Beletsky et al. (2020) manually confirmed the content of each entry as misinformation and code for each observation the
date of publication, location of publisher, associated event (for instance, whether the article makes explicit reference to the East
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I estimate these media-exposure models employing the staggered SDiD method outlined by Arkhangelsky

et al. (2021) in their appendix. This approach separates treated groups by their treatment date, estimates

an SDiD model for each treated group on the pooled control units (while excluding the other treated units),

then generates the average treatment effect on the treated (ATT) as a weighted average of each sub-group’s

ATT according to their relative proportion of post-treatment observations. The treatment here is defined

as whether a given county’s DMA has originated some media coverage prior to the observed date, while

controls apply the methodology of my primary estimates and are drawn from a donor set of all directly

adjacent counties to treated DMAs. Because these models are being identified on regional variation in

reporting alone and include time fixed effects, these estimates would correspond to only the influence of

local, rather than national reporting by media outlets on opioid mortality. Following (Packham, 2019),

I increase this restrictiveness when performing this national-scale analysis to include only counties which

recorded at least one opioid overdose for each year in the sample. A map of the misinformation-originating

counties, their DMAs and neighboring DMAs based on the Beletsky et al. data is depicted in panel (b) of

Figure 4.

The results of my media exposure staggered-SDiD are listed in Table 9. In column 1, I use the complete

set of all treated DMAs, while in column 2 I exclude the Youngstown OH DMA to account for potentially-

biasing local misinformation vectors (e.g. word-of-mouth deriving from those involved or otherwise familiar

with the East Liverpool event, absent any media coverage). Though attenuated downward relative to esti-

mates which consider only the Youngstown OH DMA as treated, opioid-related mortality rates demonstrate

significant increases within media markets following reporting on the 2017 East Liverpool event. Under

the preferred staggered-SDiD specification which excludes the Youngstown OH DMA and includes auxiliary

covariates, I observe an increase of 0.448 opioid-related deaths per 100 thousand people, or an increase of ap-

proximately 12%. Even when restricting the treatment definition to regional media reporting, these specific

misinformation shocks are consistently increasing opioid-related mortality at a substantial level.

4.3.2 Identifying changes to first responder behavior

Understanding how these fentanyl misinformation shocks actually translate to changes in mortality remains

an open question. If the mechanism pathway that I have already proposed is valid, than I should be able

to examine direct changes to first responder behavior- in particular naloxone administration rates- within

the treated regions. Unfortunately, naloxone administration data within Ohio for much of the observed time

Liverpool or some other first responder incident). I extract from these data all coverage relating to the East Liverpool event
nationally and geocode each observation to their corresponding DMA.
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frame is incomplete. Most notably, naloxone administrations performed by law enforcement are conspicu-

ously absent from the extant data. Additionally, changes to community programs that train and distribute

naloxone kits could be affecting their use more than even misinformation.

Though only descriptive, I collect from the Ohio Department of Health data for naloxone trainings,

distributed kits, and self-reported naloxone resusitations performed by laymen and plot their time series in

Figure 9. These figures are suggestive only as there is no way to know whether the trained individuals or

distributed kits actually remained within the recorded counties. Similarly, resusciations performed by laymen

are almost certainly undercounted. That being said, naloxone distribution and trainings do not appear

to significantly differ between the Youngstown OH DMA and the remainder of Ohio counties. Naloxone

administrations performed by laymen may be affected by misinformation shocks by staying persistantly low

relative to the rest of the state, but there is essentially no data for the pre-period with which to make

this claim credibly. I additionally collect and plot data for naloxone administrations performed by EMS

from the Ohio Department of Public Safety, but similarly find no significant changes between treated and

untreated regions. Following the observations from Kochersperger (2023), it seems likely that if naloxone

use is changing substantially among first responders, this is probably most pronounced among unobserved

law enforcement officers.

As an alternative approach at concretely describe the underlying behavioral mechanisms that are driving

this change in mortality, I examine changes in death locations. If perceptions of the hazards of fentanyl

exposure are discouraging the timely administration of aid, then the number of opioid overdose deaths

recorded within hospitals would decline in treated relative to untreated areas. I estimate this directly with

the following linear probability model (LPM):

Yc,i,t =β11,iODi + β12,iPostt ×ODi + β13,iPostt ×ODi × Treatc

+ δXi + γc,t + εc,i,t

where Yc,i,t is a dichotomous outcome variable representing whether or not individual i, residing in county

c that died in month t, has their listed place of death as being in one of five places17: inpatient hospital

setting, outpatient or emergency room hospital setting, dead on arrival to hospital, home or residence, and

other. ODi indicates whether the cause of death is attributed to an opioid overdose, which when interacted

17Although I only include five here, the CDC MCOD file includes eight possible values that this location of death variable
can take: Hospital, clinic or medical center - inpatient; hospital, clinic or medical center - outpatient or admitted to emergency
room; hospital, clinic or medical center - dead on arrival; decedent’s home; hospice facility; nursing home/long term care; other;
and place unknown. The omitted locations are excluded due to low counts.
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with the Postt and Treatc dummies imply a triple-differences identification approach. Postt and Treatc

follow an identical definition to those employed in the staggered-SDiD model based on the Beletsky et al.

(2020) data, where the interaction of the two implies a county’s DMA has originated media coverage that

makes reference to the East Liverpool event. Xi is a vector of individual-level demographic controls, while

γc,t are county-month fixed effects. I employ individual death certificate data from the CDC multiple cause

of death file and restrict my sample to all deaths attributed to an external injury or poisoning (S00-T88)

for the years 2015-2019 within a treated DMA or their adjacent county neighbors. Because opioid-related

deaths are relatively uncommon events outside of Appalachia, using alternative external injury deaths as a

baseline to compare against would afford a more complete picture first responder practices. As well, this

triple-differences approach allows me to observe if there are any structural changes in death locations, beyond

just those related to opioid overdoses.

The results of these LPM models are depicted in Table 10. To summarize: Within counties that have been

exposed to misinformation pertaining to the East Liverpool event, and relative to other causes of death, the

likelihood of an opioid overdose death being recorded in an inpatient or outpatient/emergency room setting

decreases by approximately 2% and 1.9%, respectively; and the likelihood of those same deaths occurring

someplace other than a medical setting or residence increases by approximately 3%. The interpretation of

the results within Table 10 is that hesitancy in administering aid has yielded fewer attempts at resuscitation,

and as such moved the location of death from medical to non-medical settings. Considering the urgency of

opioid poisoning and the general preventability of death with timely administration of aid, this latter point

is troubling.

5 Conclusions

In this paper, I have identified the significant impact of fentanyl exposure misinformation on first responder

behavior during overdose events and overall opioid-related mortality. In particular, I have examined first

responder responses to the widespread dissemination of inaccurate information regarding the supposedly-

lethal hazards of passive fentanyl exposure. By analyzing changes in opioid-related mortality following

a well-covered episode involving an Ohio police officer in 2017, the study reveals that areas with higher

media exposure to this misinformation experience significant increases in opioid overdose deaths. This study

underscores the importance of accurate information dissemination and highlights the potentially deadly

consequences of misinformation on public health outcomes.

The primary takeaway from my results is that opioid-related mortality appears to be increasing by
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approximately 2.84 deaths per 100-thousand population, per county-quarter; national-scale results place

this figure at 0.448 additional deaths per 100-thousand population, per county-quarter. For my preferred

specification, this jump in mortality represents 56.4% of the average quarterly mortality for the treated

counties over the period observed. Back-of-the-envelope calculations identify 199 avoidable overdose deaths,

or 72 per year within the Youngstown DMA, according to the SDiD model; and 5,479, or 1,992 per year

nationally, according to the preferred staggered-SDiD model. For perspective on these magnitudes in the

context of other opioid pandemic policies, Rees et al. (2019) find that the adoption of naloxone access laws by

states corresponded to a net decrease of 62-69 opioid-related deaths per year, nationally. Using the Florence

et al. (2021) estimate of $11.548 million in total economic costs per opioid overdose, this would put total

costs at $2.298 and $48.222 billion within the Youngstown DMA and nationally, respectively.

There are several noteworthy policy implications of my findings. First, it would appear that some

corrective effort on the part of criminal justice authorities is needed to combat further dissemination of

misinformation. Recent efforts at retraining first responders to correct for fentanyl hazard misperceptions

do appear effective (Winograd, Phillips, et al., 2020; Del Pozo et al., 2021), but there are limitations to the

generalizability of these results. An obvious next-step then would be to pursue a randomized control trial

experiment to observe the causal influence of first responder retraining on overdose response behavior and

mortality.

Enhanced first responder training is an obvious remedy, but there are a number of reasons for policy

makers to take pause when considering this particular approach. Namely, narrative correction does not

appear to enjoy the same degree of social media play or lurid virality of the initial fentanyl exposure events,

so efforts at retraining first responders could be costly if it were required to be conducted at a scale that

compensates for this lack of information spillovers; and while there is promise that such retraining can

influence first responder beliefs, it is unclear how universally this improved knowledge translates to actual

behavior. Analysis of more general overdose education and naloxone distribution training revealed more

complicated effects on law enforcement beliefs Winograd, Stringfellow, et al. (2020), with 31% of participants

reporting more negative attitudes towards overdose victims following training. Similarly, the companion

paper to this research (Kochersperger, 2023) observes differing responses to the fentanyl misinformation

shock in naloxone administration rates across first responder types, with by far the largest declines being

observed among law enforcement. This pronounced susceptibility to misinformation points to a broader

issue among law enforcement that may be rooted in something more fundamental than a limited knowledge

of toxicology. As outlined earlier in the research background, the present fentanyl panic appears to be just
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the current iteration of a long-present myth-spinning phenomenon; so even if fentanyl hazards impressions

are completely reversed, this may do little to limit future panics.

Another policy consideration is that media coverage of fentanyl hazards need not necessarily promote

false information, and can even be a useful means of correcting misperceptions. A cursory survey of recent

media coverage of supposed fentanyl exposure incidents does reveal the pronounced use of more skeptical

language, and even statements outright dismissing the likelihood of events as described by law enforcement.

Still, it is unclear whether this reactive fact-checking approach is a sufficient means of undoing the damage

already wrought by the initial misinformation shocks.

During the early stages of the AIDS epidemic when misbeliefs of the virus’ transmission vectors and

contagiousness dominated public perceptions, concerted efforts on the part of a select few journalists to

correct these narratives were consistently undermined by the broader media environment (Beharrell, 2003).

Ultimately, this narrative correction depended on not only the dogged efforts of media insiders, but also

celebrity intervention. Noteworthy events such as Princess Diana’s visits to the opening of London’s Mid-

dlesex Hospital AIDS ward in 1987, and Harlem Hospital’s AIDS unit in 1989 were seminal in advancing

the idea that AIDS victims were not passively contagious after she was photographed shaking hands and

hugging them without gloves. Similarly, Earvin “Magic” Johnson’s much-publicized HIV-positivity dis-

closure and subsequent sudden retirement from the NBA has been demonstrated to have reduced stigma

surrounding HIV testing, and increased diagnoses among heterosexual men (Cardazzi et al., n.d.). While

none of this is to suggest that celebrity endorsements represent a realistic policy response, it does highlight

the corrective capacity that media and media consumption can command. Herman et al. (2020) note six

months elapsed between the time of the East Liverpool event and the release of the ACMT-AACT joint

statement that debunked many of the sensational fentanyl exposure claims; but that over this same time

the scientific community was quiet and permitted the unchecked dissemination of misinformation. At a min-

imum, policymakers should expand on the medical misinformation correcting initiatives pioneered during

the COVID-19 pandemic and prioritize swift fact-checking in the future. Effective policy to counter these

misinformation narratives must both correct misperceptions among first responders and disincentive the

continued dissemination of misinformation by the media.
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Tables

Table 1: Data description, coverage and sources

Data employed Level of measure Geographic Coverage Temporal Coverage Data Source

Multiple cause-of-death file
Individual deaths,

aggregated to county-quarter
All US counties 2014-2019

National Vital Statistics System,

Centers for Disease Control and Prevention

Percentage of the population with a credit

score below 660
County-quarter All US counties 2014-2019

Equifax Subprime Credit Population,

Equifax and Federal Reserve Bank of

New York

Arrests per 100k for possession or distribution

of heroin and similar drugs

Month-agency counts,

aggregated to county-quarter
All US counties 2014-2019

Uniform Crime Reporting,

Summary Reporting System,

Federal Bureau of Investigation

Unemployment rate County-quarter All US counties 2014-2019
Local Area Unemployment Statistics,

Bureau of Labor Statistics

Percent of laborforce employed in construction County-quarter All US counties 2014-2019
Local Area Unemployment Statistics,

Bureau of Labor Statistics

County-level demographic estimates

(percent hispanic, black)
Year-quarter All US counties 2014-2019

County Population Totals,

U.S. Census Bureau

Poverty rate Year-quarter All US counties 2014-2019
Small Area Income and Poverty Estimates,

U.S. Census Bureau

Policy indicator for whether state has a

naloxone access law
State-quarter All US counties 2014-2019 Prescription Drug Abuse Policy System

Policy indicator for whether state has a law

restricting prescriptions for opioid analgesics
State-quarter All US counties 2014-2019 Prescription Drug Abuse Policy System

Policy indicator for whether state has a drug

overdose Good Samaritan Law
State-quarter All US counties 2014-2019 Prescription Drug Abuse Policy System

Policy indicator for whether state requires the

PDMP to be queried under any circumstance
State-quarter All US counties 2014-2019 Prescription Drug Abuse Policy System

Opioid dispensing rate per 100 people County-year
Most US counties

(n=2975)
2014-2019

Centers for Disease Control and Prevention,

National Center for Injury Prevention and

Control

Crime lab analysis of seized drugs (percent

of seizures containing heroin or fentanyl)

Individual seizures,

aggregated to county-quarter
86 Ohio counties 2014-2019 Ohio Bureau of Criminal Investigation
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Table 2: County-quarter summary statistics table.

Control Counties Treated Counties

Statistic N Mean N Mean

Overdose Count 288 5,951 96 11.406

Overdoses per 100k Pop. 288 4,740 96 5.910

Annual Population 288 119,087 96 161,827

% of Pop. Hispanic 288 1.714 96 2.724

% of Pop. Black 288 4.461 96 9.438

Unemployment Rate 288 5.624 96 6.072

% of Laborforce Employed in Construction 288 4.445 96 3.734

Poverty Rate 288 13.221 96 16.058

% of Pop. with Subprime Credit 288 24.656 96 26.918

Prescription Opioid Dispensing Rate 288 82.011 96 96.646

Heroin or Related Drug Arrests per 100k Pop. 96 15.144 96 14.662

Naloxone Access Laws 288 0.931 96 0.969

Good Samaritan Laws 288 0.722 96 0.656

Opioid Prescription Restriction Laws 288 0.441 96 0.438

Mandatory PDMP Laws 288 0.913 96 0.948

Fentanyl % of Seizures 144 12.234 72 14.469

Heroin % of Seizures 144 20.507 72 24.228

(a) All data described above represents average observed values by county-quarter for the years 2014-2019. Treated
counties are defined as those within the Youngstown, OH DMA (Columbiana, Mahoning, Trumbull, OH; Mercer,
PA); control counties are those that are directly adjacent and share a common border. Fentanyl and heroin seizure
figures are available within Ohio alone.
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Table 3: SDiD coefficient estimates for mortality by drug type, stratified by demographics and age.

Pre-treatment Mean SDiD estimates SDiD estimates w/ covariates

Drug-related 7.890 3.347∗∗∗ 3.953∗∗∗

(0.914) (1.073)

Opioid-related 5.012 2.353∗∗∗ 2.838∗∗∗

(0.811) (1.099)

Possibly opioid-related 7.251 3.129∗∗∗ 4.051∗∗∗

(0.823) (1.091)

Illicit opioid-related 3.811 1.520 1.876
(1.009) (1.201)

Synthetic opioid-related 2.221 2.322∗ 2.115∗

(1.222) (1.200)

Opioid related, Male 5.224 1.858∗ 3.285∗∗

(1.109) (1.552)

Opioid related, Female 5.200 1.456 1.720
(1.135) (1.356)

Opioid related, White 3.213 2.040∗∗ 2.849∗∗

(0.903) (1.262)

Opioid related, Black 7.018 −4.034 −1.447
(4.178) (5.876)

Opioid related, Hispanic 3.090 4.324 1.121
(2.639) (4.016)

Opioid related, Age <25 1.398 −0.515 0.172
(1.024) (1.042)

Opioid related, Age 25-34 13.395 6.659 11.445∗∗

(4.945) (4.556)

Opioid related, Age 35-44 11.095 7.970∗ 6.284
(4.611) (4.438)

Opioid related, Age 45-54 8.129 −0.425 0.953
(1.881) (2.052)

Opioid related, Age >54 2.258 0.767 0.800
(0.811) (0.878)

Observations 384 384

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(a) Results depicted here are derived by estimating an SDiD model which considers counties within the Youngstown OH
DMA after the 2017 East Liverpool event as treated, and their immediately bordering counties as the SDiD control donor
set. Dependent variables include per 100 thousand mortality rates for: all drug-related poisonings; opioid-related poisonings;
possibly-opioid-related poisonings which include all opioid-related deaths, as well as those coded as related to unspecified drugs;
illicit opioid-related poisonings (those associated with either heroin or a synthetic opioid, like fentanyl); and synthetic opioid-
related poisonings. Results in column 3 are estimated by employing the time-variant covariate correction from Kranz (2022)
and include the following auxiliary covariates: Percent of county population hispanic, black, or with a subprime credit score;
percent of county laborforce employed in construction; unemployment and poverty rates; annual prescription opioid dispensing
rate; arrests for heroin or related drugs per 100 thousand population; and policy indicators for whether the county’s state
had enacted naloxone access, good samaritan, mandatory PDMP, or opioid prescription restriction laws. Figures enclosed in
parentheses are cluster bootstrap standard errors.
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Table 4: Ohio fentanyl and heroin prevalence analysis results.

(a) Opioid prevalence endogeneity test

Dependent variable:

Total Drug Seizures
Fentanyl Seizures,

% of Total

Heroin Seizures,

% of Total

(1) (2) (3)

Lagged Opioid Overdose Deaths −0.290∗∗ 0.001∗ 0.00000

(0.124) (0.0003) (0.0004)

Observations 1,740 1,740 1,740

(b) SDiD results with opioid prevalence measures

Dependent variable:

Opioid-Related Overdose

Deaths Per 100k

Percent of Drug Seizures

Containing Fentanyl

Percent of Drug Seizures

Containing Heroin

SDiD Estimates 3.190∗∗ 0.015 0.101

(1.315) (0.036) (0.073)

Pre-treatment Mean 5.821 0.075 0.311

Observations 216 216 216

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(a) The results in the top panel are derived by regressing each Ohio county-quarter measure of the dependent
variables for the years 2015-2019 on the number of opioid-related deaths that occurred in the same county-quarter
of the preceding year; as well as including county and quarter fixed-effects for all Ohio counties.

(b) The results in the bottom panel outline SDiD coefficient estimates derived from the primary model specification on
the Ohio subsample, along with their bootstrapped standard errors in parentheses. Column 1 replicates the primary
opioid-related results estimate from table 3 including covariates, but additionally includes measures for the percent
of drug seizures conducted within those county-quarters that tested positive for heroin and fentanyl. Columns 2 and
3 follow the same controls specification, but set the fentanyl and heroin drug seizure percentages as the dependent
variable.

32



Table 5: SDiD robustness checks, DMAs as treatment unit

SDiD control donor set:

Adjacent counties as control Bordering DMAs as control
Bordering DMAs

without adjacent counties

Estimates without Covariates

Youngstown DMA as treated 2.353∗∗∗ 1.352 1.477
(0.811) (1.042) (1.168)

Significant viewership of Youngstown

DMA station as treated
2.031∗∗ 1.643∗ 1.671∗

(0.848) (0.986) (0.965)

Opioid-related death rate, logged 0.417∗∗ 0.161 0.222
(0.186) (0.211) (0.315)

Opioid-related deaths, levels 3.600∗∗ 3.772 4.049∗

(1.668) (2.229) (2.136)

DiD 1.493 1.536 1.551∗

(0.980) (0.987) (0.883)

Estimates with Covariates

Youngstown DMA as treated 2.838∗∗∗ 0.891 0.818
(1.065) (0.801) (0.837)

Significant viewership of Youngstown

DMA station as treated
2.394∗ 1.215∗ 1.088

(1.334) (0.717) (0.765)

Opioid-related death rate, logged 0.519∗∗ 0.040 0.014
(0.233) (0.145) (0.187)

Opioid-related deaths, levels 4.138∗∗∗ 2.935∗∗ 3.176∗

(1.579) (1.302) (1.745)

DiD 2.214∗ 1.078∗ 0.920
(1.134) (0.582) (0.685)

Observations 384 1,200 912

Estimates without Covariates

Post ICD-10 adoption 1.994∗∗ 1.365 1.473
(0.926) (0.978) (1.055)

Estimates with Covariates

Post ICD-10 adoption 3.091∗ 1.429 1.390∗

(1.681) (0.898) (0.766)

Observations 272 850 646

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

SDiD results for opioid-related mortality depicted here include: An alternative treatment specification that counts any counties
the FCC has listed as having significant viewership of any stations within the Youngstown DMA as treated; alternative dependent
variables of opioid-related death counts in levels and logs derived from the inverse hyperbolic sine transformation; and a
conventional DiD model. The bottom panel re-estimates the opioid-related mortality model on the subset of observations
occurring after the October 2015 adoption of the ICD-10 coding system. Column 1 defines donors to the SDiD control from the
immediately bordering counties to the treated DMA; column 2, expands this donor set to include all counties of bordering DMAs;
and in column 3 includes all counties in bordering DMAs but excludes immediately bordering counties. The covariate-inclusive
estimates employ the correction from Kranz (2022) and includes the following time-variant controls: Percent of county population
hispanic, black, or with a subprime credit score; percent of county laborforce employed in construction; unemployment and
poverty rates; annual prescription opioid dispensing rate; arrests for heroin or related drugs per 100 thousand population; and
policy indicators for whether the county’s state had enacted naloxone access, good samaritan, mandatory PDMP, or opioid
prescription restriction laws.

33



Table 6: SDiD robustness checks, commuting zones as treatment unit

SDiD control donor set:

Adjacent counties as control
Bordering commuter zones

as control

Bordering commuter zones

without adjacent counties

Estimates without Covariates

Youngstown commuter zone as treated 2.031∗∗ 1.809∗∗ 1.680
(0.813) (0.893) (1.076)

Opioid-related death rate, logged 0.290 0.219 0.249
(0.185) (0.191) (0.250)

Opioid-related deaths, levels 2.979∗ 3.463∗ 3.721∗

(1.557) (1.874) (1.945)

DiD 1.562∗ 1.884∗∗ 2.032∗∗∗

(0.868) (0.752) (0.782)

Estimates with Covariates

Youngstown commuter zone as treated 2.394∗∗∗ 1.534∗ 1.187
(1.190) (0.884) (0.874)

Opioid-related death rate, logged 0.457∗ 0.122 0.006
(0.269) (0.186) (0.235)

Opioid-related deaths, levels 3.329∗∗∗ 3.113∗ 3.676
(1.547) (1.718) (2.250)

DiD 1.933 1.636∗∗ 1.693∗∗

(1.199) (0.717) (0.778)

Observations 384 960 696

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

SDiD results for opioid-related mortality depicted here substitute local commuter zone delineations from Fowler and
Jensen (2020) for DMAs and include the following variations: Alternative dependent variables of opioid-related death
counts in levels and logs derived from the inverse hyperbolic sine transformation; and a conventional DiD model.
Column 1 defines donors to the SDiD control from the immediately bordering counties to the treated commuter
zone; column 2, expands this donor set to include all counties of bordering commuter zone; and in column 3 includes
all counties in bordering commuter zone but excludes immediately bordering counties. The covariate-inclusive esti-
mates employ the correction from Kranz (2022) and includes the following time-variant controls: Percent of county
population hispanic, black, or with a subprime credit score; percent of county laborforce employed in construction;
unemployment and poverty rates; annual prescription opioid dispensing rate; arrests for heroin or related drugs per
100 thousand population; and policy indicators for whether the county’s state had enacted naloxone access, good
samaritan, mandatory PDMP, or opioid prescription restriction laws.
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Table 7: Covariate balance tables for SDiD donor set specifications.

SDiD control donor set:

Covariate

Adjacent counties

as control

Bordering DMAs

as control

Bordering DMAs

without adjacent counties

Overdoses per 100k Pop. 2.455 3.243 3.079

Annual Population 602.214 1,186.986 845.837

% of Pop. Hispanic 41.647 99.505 76.825

% of Pop. Black 139.241 311.535 227.105

Unemployment Rate 3.790 8.271 8.118

% of Laborforce Employed

in Construction
8.118 11.409 10.479

Poverty Rate 11.566 15.863 14.689

% of Pop. with

Subprime Credit
19.887 19.043 16.435

Prescription Opioid

Dispensing Rate
21.501 25.714 19.436

Heroin or Related Drug

Arrests per 100k Pop.
3.721 5.894 5.832

Naloxone Access Laws 0.006 0.547 0.566

Good Samaritan Laws 0.654 0.733 0.752

Opioid Prescription

Restriction Laws
0.150 0.115 0.100

Mandatory PDMP Laws 0.006 1 1

Figures in the table above represent the maximum standardized mean differences on observables when comparing
covariate values for the treated counties against the weighted controls drawn from the SDiD control donor set.
Columns 1, 2, and 3 represent the donor set specifications for all immediately adjacent counties to the Youngstown
OH DMA, all counties in within bordering DMAs, and all counties in within bordering DMAs excluding immediately
adjacent counties to the Youngstown OH DMA, respectively. Weights assigned to controls are derived from the
opioid-related mortality SDiD model estimated without covariates.
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Table 8: Falsification test SDiD results.

Dependent variable:

Motor Vehicle Accident

Deaths Per 100k

Heart Attack-Related

Deaths Per 100k

Assault-Related

Deaths Per 100k

Without Covariates −0.484 −0.144 0.076

(0.557) (4.695) (0.260)

With Covariates −0.703 3.938 0.026

(0.648) (6.321) (0.293)

Pre-treatment Mean 2.605 66.37 1.152

Observations 384 384 384

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The results above are derived by following the same specifications as the opioid-related mortality models in table
3, row 1, but using mortality rates for motor vehicle accident, heath attack, and assault-related deaths. Auxiliary
covariates include: Percent of county population hispanic, black, or with a subprime credit score; percent of county
laborforce employed in construction; unemployment and poverty rates; annual prescription opioid dispensing rate;
arrests for heroin or related drugs per 100 thousand population; and policy indicators for whether the county’s state
had enacted naloxone access, good samaritan, mandatory PDMP, or opioid prescription restriction laws. Figures
enclosed in parentheses are cluster bootstrap standard errors.
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Table 9: Staggered SDiD estimates for all US counties treated with media coverage of East Liverpool event.

SDiD control treatment specification:

All treated DMAs and

adjacent counties as controls

All treated DMAs except Youngstown, OH

and adjacent counties as controls

Without Covariates 0.571∗∗∗ 0.565∗∗∗

(0.180) (0.197)

With Covariates 0.464∗∗ 0.448∗∗

(0.202) (0.214)

Pre-treatment Mean 3.903 3.892

Observations 13,752 13,656

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Treatment variables used here is an indicator for whether a county’s DMA has originated media coverage that makes
reference to the East Liverpool event. The results for column 1 use a sample for all counties in treated DMAs and their
adjacent neighbors, while column 2 excludes counties within the Youngstown OH DMA; both samples drop counties
which did not record at least one opioid death per year over the observed period. Covariates employed by the models
in row 2 include: Percent of county population hispanic, black, or with a subprime credit score; percent of county
laborforce employed in construction; unemployment and poverty rates; annual prescription opioid dispensing rate;
arrests for heroin or related drugs per 100 thousand population; and policy indicators for whether the county’s state
had enacted naloxone access, good samaritan, mandatory PDMP, or opioid prescription restriction laws. Estimates
enclosed in brackets are staggered-adoption cluster bootstrap standard errors derived from the method described by
Clarke et al. (2023).
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Table 10: Place-of-death linear probability results.

Death Location: Inpatient
Outpatient &

Emergency Room
DOA Home Other

Variables

Media-Treated 0.0007 0.0006 −2.15× 10−6 −4.54× 10−5 -0.0010

(0.0018) (0.0016) (0.0006) (0.0001) (0.0009)

Is Opioid Overdose -0.1203∗∗∗ -0.0118∗∗∗ 0.0008 0.2367∗∗∗ -0.0782∗∗∗

(0.0018) (0.0016) (0.0006) (0.0023) (0.0023)

Media-Treated× Is Opioid Overdose -0.0197∗∗∗ -0.0186∗∗∗ −6.46× 10−5 0.0014 0.0298∗∗∗

(0.0031) (0.0025) (0.0010) (0.0035) (0.0037)

Pre-treatment Means 0.2609 0.1307 0.0125 0.2720 0.2233

Percent Effect −0.0755 −0.1423 −0.0051 0.0051 0.1335

Fit statistics

Observations 809,703 809,703 809,703 809,703 809,703

R2 0.20116 0.11889 0.11737 0.19103 0.21648

Within R2 0.01169 0.00050 5.05×10−5 0.03469 0.00363

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Clustered (County×Month) standard-errors in parentheses

Linear probability model estimates for the marginal likelihood of one of five specific death locations being listed on
certificate. Treatment defined as the interaction between an indicator for whether an individual death observation’s
DMA has originated media coverage that makes reference to the East Liverpool event, and an indicator for whether
the observed death is attributed to an opioid overdose. Sample is drawn from the complete set of individual deaths
recorded in a treated DMA or neighboring county based on Beletsky et al. (2020), which attribute the underlying
cause to an external injury or poisoning (corresponding to ICD-10 codes S00-T88). Covariates include reported age,
sex, race, ethnicity, highest level of educational attainment, as well as county-month fixed effects.
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Figure Captions

Figure 1. Time series of Google search interest in the hazards of fentanyl exposure.

Figure 2. Regional time series of Google search interest in fentanyl.

Figure 3. Time series for opioid mortality and prevalence.

Figure 4. Treatment maps for East Liverpool event.

Figure 5. Plotted primary SDiD results.

Figure 6. Distribution of placebo test results.

Figure 7. Comparison of SDiD controls constructed under different donor set specifications.

Figure 8. Regional time series of local and county-level government expenditures on police protection, fire
prevention, and health services.

Figure 9. Regional time series of naloxone kit distribution, trainings, and administrations.
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Figures

Figure 1: Time series of Google search interest in the hazards of fentanyl exposure.
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Google search data was collected from Google Trends and represents the relative popularity of search terms over the
specified time frame; the time series was derived from querying the Google trends for “fentanyl AND (touch* OR
contact* OR absor* OR inhal* OR expos*)”. Solid black line is the weekly average for the Google Trends Index,
while the dashed blue line is the rolling average of the 20 preceding weeks. The dashed vertical lines demonstrate the
dates of the DEA press release and the East Liverpool event.

Figure 2: Regional time series of Google search interest in fentanyl.
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Google search data was collected from Google Trends and represents the relative popularity of search terms over the
specified time frame. Time series were derived from querying the Google trends for “fentanyl” for each Designated
Market Area (DMA)-quarter over 2014-2019. The Youngstown DMA contains East Liverpool, OH; while neighbor
DMA includes all counties in media markets that share a border with the Youngstown DMA; and non-neighbor
DMAs include all other counties in Ohio, Pennsylvania and West Virginia for which search trends data is recorded.
Shaded regions represent the 95% confidence intervals and the dashed vertical line demonstrates the date of the East
Liverpool event.
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Figure 3: Time series for opioid mortality and prevalence.

(a) Opioid-related deaths per 100 thousand population by county-quarter. Shaded regions represent the 95% confi-
dence intervals and the dashed vertical line demonstrates the date of the East Liverpool event.

(b) Opioid prevalence as percent of drug seizures that tested positive for fentanyl and heroin based on the BCI data,
by county-quarter. Shaded regions represent the 95% confidence intervals and the dashed vertical line demonstrates
the date of the East Liverpool event.
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Figure 4: Treatment maps for East Liverpool event.

(a) A map of counties considered as treated under my primary identification strategy. Blue-shaded region is
Columbiana county, where East Liverpool is located; yellow-shaded regions are other counties within the same DMA;
purple-shaded counties are bordering counties within neighbor DMAs; and the orange-shaded region are all other
counties within the neighboring DMAs.

County Treatment Status

Headline−Originating County

Neighbor County

Neighbor DMA

Treated DMA

(b) A map of national media coverage of East Liverpool event, as based on the data from Beletsky et al. (2020).
Blue-shaded regions correspond to counties where a news article which made reference to the East Liverpool event
originated; yellow-shaded regions are other counties within the same DMAs as those which originated coverage of the
East Liverpool event; purple-shaded counties are bordering counties within neighbor DMAs; and the orange-shaded
region are all other counties within the neighboring DMAs.
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Figure 5: Plotted primary SDiD results.

(a) SDiD results depicted here are according to the opioid-related mortality specifications from table 3. Pink-shaded
regions at the bottom of plots depict time-weights, black arrowed-line represents the average treatment effect. The
bottom panel is estimated employing the time-variant covariate correction from Kranz (2022) (hence the seemingly-
negative values for the SDiD control the beginning of the observation period) and includes the following auxiliary
covariates: Percent of county population hispanic, black, or with a subprime credit score; percent of county laborforce
employed in construction; unemployment and poverty rates; annual prescription opioid dispensing rate; arrests for
heroin or related drugs per 100 thousand population; and policy indicators for whether the county’s state had enacted
naloxone access, good samaritan, mandatory PDMP, or opioid prescription restriction laws.

Figure 6: Distribution of placebo test results.

(a) Histogram and density plots above describe the empirical noise distribution for the primary opioid-related mor-
tality SDiD model controls. Coefficient estimates here are derived according to the placebo protocol outlined by
Arkhangelsky et al. (2021), which randomly assigns controls as treated and the SDiD model is re-estimated on the
donor set alone. Distributions are based on 500 replications for each model specification. Dashed lines indicate the
value of the estimated SDiD treatment effects.

43



Figure 7: Comparison of SDiD controls constructed under different donor set specifications.

(a) SDiD results depicted here are according to the opioid-related mortality specifications from row 1 of table 5.
Shaded regions at the bottom of plots depict time-weights for the corresponding donor set specification, which
include: All immediately adjacent counties to the Youngstown OH DMA, all counties in within bordering DMAs,
and all counties in within bordering DMAs excluding immediately adjacent counties to the Youngstown OH DMA,
respectively.
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Figure 8: Regional time series of local and county-level government expenditures on police protection, fire
prevention, and health services.
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(a) Time series figures for per capita municipal- and county-level expenditures on police protection, fire prevention,
and health services spending from the Census’ Annual Survey of State and Local Government Finances. Plots are
averages across counties within the Youngstown OH DMA against all other counties in Ohio, Pennsylvania, and
West Virginia by county-year. Shaded regions represent the 95% confidence intervals and the dashed vertical line
demonstrates the date of the East Liverpool event.
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Figure 9: Regional time series of naloxone kit distribution, trainings, and administrations.

0

40

80

120

2017 2018 2019

N
al

ox
on

e 
K

its
 p

er
 1

00
k,

pe
r 

C
ou

nt
y−

Q
ua

rt
er

0

40

80

120

2017 2018 2019N
al

ox
on

e 
Tr

ai
ni

ng
s 

pe
r 

10
0k

,
pe

r 
C

ou
nt

y−
Q

ua
rt

er

0

10

20

30

2017 2018 2019N
al

ox
on

e 
R

ev
er

sa
ls

 p
er

 1
00

k
by

 L
ay

m
en

, p
er

 C
ou

nt
y−

Q
ua

rt
er

25

50

75

100

2017 2018 2019N
al

ox
on

e 
R

ev
er

sa
ls

 p
er

 1
00

k
by

 E
M

S
, p

er
 Z

C
TA

−
Q

ua
rt

er

Locations
Other OH
DMAs
Youngstown
DMA

(a) Time series figures for naloxone trainings, distributed kits, self-reported naloxone resusitations performed by
laymen, and naloxone resusitations performed by EMS per 100k population. Plots are averages across counties/ZCTAs
within the Youngstown OH DMA against all other counties in Ohio by county-quarter or ZCTA-quarter. Shaded
regions represent the 95% confidence intervals and the dashed vertical line demonstrates the date of the East Liverpool
event.
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